Skip to main content

Spring AI 可观测性完全指南:让AI应用监控变得简单高效

在AI应用爆发式增长的今天,Spring AI 1.0版本带来了革命性的可观测性功能。本文将深入探讨如何利用Spring AI + Micrometer 构建企业级AI应用监控体系,实现成本控制、性能优化和全链路追踪。

为什么Spring AI应用急需可观测性?

AI服务成本失控的痛点

在企业级AI应用中,使用DeepSeek、OpenAI、Google Gemini或Azure OpenAI等服务时,成本控制是一个严峻挑战:
  • Token消耗不透明:无法精确了解每次AI调用的成本
  • 费用增长失控:大规模应用中,AI服务费用可能呈指数级增长
  • 性能瓶颈难定位:AI调用链路复杂,问题排查困难
  • 资源使用不合理:缺乏数据支撑的优化决策

Spring AI可观测性的价值

Spring AI的可观测性功能为这些痛点提供了完美解决方案:
  • 精准Token监控:实时追踪输入/输出Token消耗,精确到每次调用
  • 智能成本控制:基于使用统计制定成本优化策略
  • 深度性能分析:识别AI调用瓶颈,优化响应时间
  • 完整链路追踪:端到端记录请求在Spring AI应用中的完整流转

实战演练:构建可观测的Spring AI翻译应用

第一步:Spring AI项目初始化

start.spring.io创建Spring Boot项目,集成Spring AI核心依赖: Maven依赖配置(Spring AI BOM管理):
<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-bom</artifactId>
            <version>1.0.0</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

<dependencies>
    <!-- Spring AI DeepSeek 集成 -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-model-deepseek</artifactId>
    </dependency>
    
    <!-- Spring Boot Web -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    
    <!-- Spring Boot Actuator 监控 -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-actuator</artifactId>
    </dependency>
</dependencies>

第二步:Spring AI客户端配置

主应用类配置:
@SpringBootApplication
public class SpringAiTranslationApplication {
    
    public static void main(String[] args) {
        SpringApplication.run(SpringAiTranslationApplication.class, args);
    }
    
    @Bean
    public ChatClient chatClient(ChatClient.Builder builder) {
        return builder.build();
    }
}
Spring AI配置文件:
# Spring AI 可观测性配置
management:
  endpoints:
    web:
      exposure:
        include: "*"
  endpoint:
    health:
      show-details: always
  metrics:
    export:
      prometheus:
        enabled: true

spring:
  threads:
    virtual:
      enabled: true
  ai:
    deepseek:
      api-key: ${DEEPSEEK_API_KEY}
      chat:
        options:
          model: deepseek-chat
          temperature: 0.8
环境变量设置:
export DEEPSEEK_API_KEY=your-deepseek-api-key

第三步:构建Spring AI翻译服务

智能翻译控制器:
@RestController
@RequestMapping("/api/v1")
@RequiredArgsConstructor
@Slf4j
public class SpringAiTranslationController {

    private final ChatModel chatModel;

    @PostMapping("/translate")
    public TranslationResponse translate(@RequestBody TranslationRequest request) {
        log.info("Spring AI翻译请求: {} -> {}", request.getSourceLanguage(), request.getTargetLanguage());
        
        String prompt = String.format(
                "作为专业翻译助手,请将以下%s文本翻译成%s,保持原文的语气和风格:\n%s",
                request.getSourceLanguage(),
                request.getTargetLanguage(),
                request.getText()
        );

        String translatedText = chatModel.call(prompt);
        
        return TranslationResponse.builder()
                .originalText(request.getText())
                .translatedText(translatedText)
                .sourceLanguage(request.getSourceLanguage())
                .targetLanguage(request.getTargetLanguage())
                .timestamp(System.currentTimeMillis())
                .build();
    }
}

@Data
@Builder
class TranslationRequest {
    private String text;
    private String sourceLanguage;
    private String targetLanguage;
}

@Data
@Builder
class TranslationResponse {
    private String originalText;
    private String translatedText;
    private String sourceLanguage;
    private String targetLanguage;
    private Long timestamp;
}

第四步:Spring AI翻译API测试

curl -X POST http://localhost:8080/api/v1/translate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Spring AI makes AI integration incredibly simple and powerful",
    "sourceLanguage": "英语",
    "targetLanguage": "中文"
}'

# 响应示例
{
  "originalText": "Spring AI makes AI integration incredibly simple and powerful",
  "translatedText": "Spring AI让AI集成变得极其简单而强大",
  "sourceLanguage": "英语",
  "targetLanguage": "中文",
  "timestamp": 1704067200000
}

Spring AI监控指标深度解析

核心指标1:Spring AI操作性能监控

指标端点/actuator/metrics/spring.ai.chat.client.operation
{
  "name": "spring.ai.chat.client.operation",
  "description": "Spring AI ChatClient操作性能指标",
  "baseUnit": "seconds",
  "measurements": [
    {
      "statistic": "COUNT",
      "value": 15
    },
    {
      "statistic": "TOTAL_TIME", 
      "value": 8.456780293
    },
    {
      "statistic": "MAX",
      "value": 2.123904083
    }
  ],
  "availableTags": [
    {
      "tag": "gen_ai.operation.name",
      "values": ["framework"]
    },
    {
      "tag": "spring.ai.kind",
      "values": ["chat_client"]
    }
  ]
}
业务价值
  • 监控Spring AI翻译服务调用频次
  • 分析Spring AI响应时间分布
  • 识别Spring AI性能瓶颈

核心指标2:Spring AI Token使用量精准追踪

指标端点/actuator/metrics/gen_ai.client.token.usage
{
  "name": "gen_ai.client.token.usage",
  "description": "Spring AI Token使用量统计",
  "measurements": [
    {
      "statistic": "COUNT",
      "value": 1250
    }
  ],
  "availableTags": [
    {
      "tag": "gen_ai.response.model",
      "values": ["deepseek-chat"]
    },
    {
      "tag": "gen_ai.request.model", 
      "values": ["deepseek-chat"]
    },
    {
      "tag": "gen_ai.token.type",
      "values": [
        "output",
        "input", 
        "total"
      ]
    }
  ]
}
成本控制价值
  • 精确计算Spring AI服务成本
  • 优化Prompt设计降低Token消耗
  • 制定基于使用量的预算策略

Spring AI调用链路追踪实战

第一步:集成Zipkin追踪

添加Spring AI追踪依赖:
<dependency>
  <groupId>io.micrometer</groupId>
  <artifactId>micrometer-tracing-bridge-brave</artifactId>
</dependency>
<dependency>
  <groupId>io.zipkin.reporter2</groupId>
  <artifactId>zipkin-reporter-brave</artifactId>
</dependency>

第二步:启动Zipkin服务

docker run -d \
  --name zipkin-spring-ai \
  -p 9411:9411 \
  -e STORAGE_TYPE=mem \
  openzipkin/zipkin:latest

第三步:Spring AI追踪配置

management:
  zipkin:
    tracing:
      endpoint: http://localhost:9411/api/v2/spans
  tracing:
    sampling:
      probability: 1.0

Spring AI链路追踪效果展示

Zipkin界面展示Spring AI调用链路: Spring AI调用链路总览 Spring AI详细调用时序: Spring AI调用时序分析 通过Zipkin可以清晰看到:
  • Spring AI ChatClient的调用耗时
  • DeepSeek API的响应时间
  • 完整的Spring AI请求链路

Spring AI Observations源码架构解析

Spring AI可观测性核心流程: Spring AI Observations架构图 Spring AI的可观测性基于以下核心组件:
  1. ChatClientObservationConvention:定义Spring AI观测约定
  2. ChatClientObservationContext:Spring AI观测上下文
  3. MicrometerObservationRegistry:指标注册中心
  4. TracingObservationHandler:链路追踪处理器